Reduction reactions of binuclear manganese-molybdenum complexes containing $\mathrm{S}_{2} \mathrm{CPR}_{3}$ and bidentate P-donor bridges. X-Ray structure of $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{4}(\mu\right.$-tedip $\left.)\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)\right]$

Eva M. López ${ }^{\text {a }}$, Daniel Miguel ${ }^{\text {a, * }}$, Julio A. Pérez-Martínez ${ }^{\text {a }}$, Víctor Riera ${ }^{\text {a }}$, Santiago García-Granda ${ }^{\text {b }}$
${ }^{\text {a }}$ Instituto de Química Organometálica, Universidad de Oviedo, 33071 Oviedo, Spain
${ }^{\text {b }}$ Departamento de Química Física y Analítica, Universidad de Oriedo, 33071 Orielo, Spain

Received 29 June 1994

Abstract

The reduction of the substituted derivatives $\left[\mathrm{MnMo}(\mathrm{CO})_{5}(\mu-\mathrm{Br})(\mu-\mathrm{L}-\mathrm{L})\left(\mu-\mathrm{S}_{2} \mathrm{CPR}_{3}\right)\right](1, \mathrm{~L}-\mathrm{L}=\mathrm{dmpm}$ or tedip), with NaHg produces anions (2) that, upon reaction with ClSnPh_{3}, give neutral tetracarbonyls $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{4}(\mu-\mathrm{L}-\mathrm{L})(\mu-\right.$ $\mathrm{S}_{2} \mathrm{CPR}_{3}$)] (3). An X-ray structure determination of $\mathbf{3 a}\left(\mathrm{L}-\mathrm{L}=\right.$ tedip, $\mathrm{R}=\mathrm{Cy}$) demonstrates the addition of SnPh_{3} to Mo and migration of the central carbon atom of the $S_{2} \mathrm{CPR}_{3}$ from Mo to Mn. Simultaneous loss of one carbonyl group from the manganese atom allows a change of coordination of $S_{2} \mathrm{CPR}_{3}$ from $\eta^{1} ; \eta^{3}$ (in 1) to $\eta^{3} ; \eta^{2}$ (in 3). The tetracarbonyls 3 can also be prepared by reaction of the triphenylstannylhexacarbonyl derivatives [$\mathrm{MnMo}(\mathrm{CO})_{6}\left(\mathrm{SnPh}_{3}\right)\left(\mu-\mathrm{S}_{2} \mathrm{CPR}_{3}\right)$] with bidentate donors $\mathrm{L}-\mathrm{L}$ (dmpm or tedip), through substitution of one CO group on each metal.

Keywords: Manganese; Molybdenum; Trialkylphosphoniodithioformate bridges; X-ray structure

1. Introduction

Trialkylphosphoniodithioformates $\mathrm{S}_{2} \mathrm{CPR}_{3}$, are capable of forming very stable bridges when coordinated $\eta^{2}\left(\mathrm{~S}, \mathrm{~S}^{\prime}\right) ; \eta^{3}\left(\mathrm{~S}, \mathrm{C}, \mathrm{S}^{\prime}\right)$ in binuclear complexes, such as the hexacarbonyls $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{S}_{2} \mathrm{CPR}_{3}\right)\right]$ which contain an $\mathrm{Mn}-\mathrm{Mn}$ bond [1]. These hexacarbonyl complexes undergo reduction and hydride-addition reactions, affording μ-hydrido compounds containing phosphoniodithioformate esters [2] or phosphonioethenetrithiolate [3]. All these facts have stimulated our interest in finding rational methods to prepare similar complexes of other metals and we have recently reported a convenient method for obtaining heterodinuclear complexes containing manganese and molybdenum. The metal atoms, which are not directly bonded, are bridged by a halide and an $\mathrm{S}_{2} \mathrm{CPR}_{3}$ which acts as an (S, S^{\prime}) chelate (to Mn) and as $\eta^{3}\left(\mathrm{~S}, \mathrm{C}, \mathrm{S}^{\prime}\right)$ pseudoallyl (to Mo) [4]. As an extension, we have found recently

[^0]that the reduction of hexacarbonyls $\left[\mathrm{MnMo}(\mathrm{CO})_{6}(\mu-\right.$ $\left.\mathrm{Br})\left(\mu-\mathrm{S}_{2} \mathrm{CPR}_{3}\right)\right]$ (A in Scheme 1) with sodium amalgam in THF produces very reactive heterobinuclear anions B which react with ClSnPh_{3} to afford neutral $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{6}\left(\mu-\mathrm{S}_{2} \mathrm{CPR}_{3}\right)\right](\mathbf{C}$ in Scheme 1) [5].

The formation of intermediate heterodinuclear carbonyl anions such as \mathbf{B} is of great interest due to the lack of such kind of species as recently pointed out [6]. Additionally, the reactions leading from \mathbf{A} to \mathbf{C} had

two special features: first, regiospecific addition of the triphenylstannyl group to the molybdenum atom, suggesting that it is Mo which carries most of the negative charge in the heterobinuclear anions \mathbf{B} and second the rearrangement of the $\mathrm{S}_{2} \mathrm{CPR}_{3}$ which includes migration of the central carbon from Mo to Mn. The additional bridges play an important role in the kind of bonding by 1,1 -dithiolate $[7,8]$. Since the pentacarbonyls $\left[\mathrm{MnMo}(\mathrm{CO})_{5}(\mu-\mathrm{Br})(\mu-\mathrm{L}-\mathrm{L})\left(\mu-\mathrm{S}_{2} \mathrm{CPR}_{3}\right)\right](1 \mathrm{a}-$ d in Scheme 1) which contain bidentate P-donor bridges were available from previous work [4], they were chosen to test the scope of the reduction reactions and the generality of the rearrangement. We report here the application of the reduction/stannylation sequence to obtain derivatives containing diphosphine and diphosphite bridges.

2. Results and discussion

Treatment of $\left[\mathrm{MnMo}(\mathrm{CO})_{5}(\mu-\mathrm{Br})(\mu-\mathrm{L}-\mathrm{L})(\mu-\right.$ $\left.\left.\mathrm{S}_{2} \mathrm{CPR}_{3}\right)\right](\mathbf{1 a - d}$ in Scheme 1) [4] with NaHg in THF at room temperature affords highly reactive anions which are formulated as $\left[\mathrm{MnMo}(\mathrm{CO})_{5}(\mu-\mathrm{P}-\mathrm{P})(\mu-\right.$ $\left.\left.\mathrm{S}_{2} \mathrm{CPR}_{3}\right)\right]^{-}$(2a-d). Subsequent reaction with ClSnPh_{3} produced neutral, stable derivatives of formula $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{4}(\mu-\mathrm{P}-\mathrm{P})\left(\mu-\mathrm{S}_{2} \mathrm{CPR}_{3}\right)\right] \quad(3 \mathrm{a}-\mathrm{d}$ in Scheme 1).

An X-ray determination was carried out on 3a. The crystallographic data are presented in Table 1 (the perspective view being given in Fig. 1), Table 2 (atomic parameters) and Table 3 (selected bond distances and angles). The Mn-Mo distance of $2.937(8) \AA$, although slightly longer than that in the related hexacarbonyl $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{6}\left(\mu-\mathrm{S}_{2} \mathrm{CP}^{i} \mathrm{Pr}_{3}\right)\right](2.877(1) \AA[5])$ is consistent with the existence of a direct bond between manganese and molybdenum. In contrast, the structure of 3a indicates the regiospecific addition of the triphenyltin group to the molybdenum atom and the migration of the central carbon of the $\mathrm{S}_{2} \mathrm{CPCy}_{3}$ from molybdenum to manganese. This shows that the $\mathrm{P}-\mathrm{P}$ bridges in 3a-d do not modify either the regiochemistry of the addition of SnPPh_{3} or the factors governing the rearrangement of the central carbon atom of $\mathrm{S}_{2} \mathrm{CPCy}_{3}$ from one of the metals to the other.

However, there is a remarkable difference between reaction sequence $\mathbf{1} \rightarrow \mathbf{2} \rightarrow \mathbf{3}$ and $\mathbf{A} \rightarrow \mathbf{B} \rightarrow \mathbf{C}$. In 3a, both sulphur atoms of the $\mathrm{S}_{2} \mathrm{CPCy}_{3}$ are coordinated to both metals, whereas in the starting complex 1a one sulphur was coordinated to molybdenum but not to manganese [4]. Apart from rearranging the carbonmetal bond in the reaction sequence from 1 to 3 (through the intermediate anions 2), the $\mathrm{S}_{2} \mathrm{CPR}_{3}$ has regained the $\eta^{2}\left(S, S^{\prime}\right) ; \eta^{3}\left(S, C, S^{\prime}\right)$ bonding mode by expelling one of the carbonyl groups bonded to manganese. The loss of the CO occurs either in the first

Table 1
Crystal data and refinement details for $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{4}(\mu-\right.$ tedip) $\left.\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3a)

Empirical formula	$\mathrm{C}_{49} \mathrm{H}_{68} \mathrm{MnMoO}_{9} \mathrm{P}_{3} \mathrm{~S}_{2} \mathrm{Sn} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
M	1312.61
Crystal system, space group	triclinic, $P \overline{1}$
$a(\AA)$	$12.911(5)$
$b(\AA)$	$19.909(6)$
$c(\AA)$	$13.243(5)$
$\alpha\left({ }^{\circ}\right)$	$89.96(3)$
$\beta\left({ }^{\circ}\right)$	$116.85(3)$
$\gamma\left({ }^{\circ}\right)$	$91.18(3)$
$U\left(\AA^{3}\right)$	$3036(2)$
Z	2
$T(\mathrm{~K})$	293
$D\left(\mathrm{~g}\right.$ cm $\left.{ }^{-3}\right)$	1.44
$F(000)$	1340
$\lambda($ Mo K $\alpha)(\AA)$	0.71073
Crystal size (mm)	$0.10 \times 0.07 \times 0.07$
Crystal colour	red
$\left.\mu(\mathrm{cm})^{-1}\right)$	10.84
Method of collection	$\omega-2 \theta$ scan
Scan range $\left({ }^{\circ}\right)$	$0 \leq \theta \leq 25$
Drift corrections: max, min	$1.128,0.995$
No. of reflections measured	11204
No. of reflections	1712
\quad observed $I \geq 3 \sigma(I)$	
Absorption correction	DIFABS
\quad factors: max, min	$0.740,1.135$
No. of parameters	326
Weighting scheme	$w=\left[\sigma^{2}(F)+g\left(F^{2}\right)\right]^{-1}$
g	0.0015
Final residuals R, R_{w}	$0.074,0.074$

step (reduction with sodium amalgam) or after incorporation of the triphenyltin group. Due to the instability of anions 2 , it has not been possible to obtain reliable spectroscopic information apart from their IR spectra (see Experimental details).

Fig. 1. Perspective view (Euclid package) [12] of the core of $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{4}(\mu\right.$-tedip $\left.)\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)\right](3 a)$, showing the atom numbering.

Table 2
Fractional coordinates and equivalent isotropic displacement coefficients ${ }^{\text {a }}\left(\AA^{2} \times 10^{2}\right)$ for $\left[\mathrm{MnMo}^{2}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{4}(\mu\right.$-tedip $\left.)\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)\right]$ (3a)

Atom	x	y	z	$U_{\text {iso }}(\times 100)$
Mn	0.3416(6)	0.8222(3)	1.0229(6)	4.2(4)
Mo	0.2155(4)	$0.6931(2)$	$0.9467(3)$	3.6 (2)
Sn	$0.1227(3)$	$0.6090(2)$	$0.7554(3)$	3.7(2)
S(1)	$0.260(1)$	$0.7770(6)$	0.836(1)	4.4(6)
S(2)	0.424(1)	$0.7170(6)$	1.034(1)	$4.5(6)$
P(1)	$0.213(1)$	$0.8342(7)$	1.084(1)	5.6 (8)
P(2)	$0.182(1)$	$0.6986(6)$	$1.107(1)$	5.4(8)
$\mathrm{P}(3)$	$0.524(1)$	$0.7979(6)$	0.895(1)	4.2(6)
C(1)	$0.409(3)$	0.781(2)	0.930(3)	$2.0(1)$
C(2)	$0.457(5)$	0.846(2)	$1.165(5)$	$7.0(2)$
$\mathrm{O}(2)$	$0.527(4)$	0.853(2)	$1.248(3)$	10.0(1)
C(3)	$0.331(4)$	0.906 (3)	$0.985(4)$	$7.0(2)$
O(3)	$0.337(3)$	0.962(2)	0.963 (3)	12.0(1)
C(4)	$0.234(4)$	$0.601(2)$	$0.998(4)$	$5.0(1)$
$\mathrm{O}(4)$	$0.258(3)$	0.547(2)	$1.035(3)$	$7.0(1)$
C(5)	$0.040(4)$	$0.710(2)$	$0.880(4)$	$6.0(2)$
O(5)	-0.052(3)	0.721 (2)	0.834(3)	9.0 (1)
O(1)	$0.186(2)$	0.773(1)	1.152(2)	6.0 (9)
O(11)	(0.086(3)	0.848(2)	$1.010(3)$	8.0 (1)
C(11)	$0.067(5)$	0.887(3)	0.919(5)	$10.0{ }^{\text {b }}$
C(13)	-0.042(5)	0.919(2)	0.899(4)	$10.0{ }^{\text {b }}$
O(12)	().254(3)	0.888(2)	$1.182(3)$	8.0 (1)
C(12)	().172(6)	$0.902(3)$	$1.247(5)$	14.0(3)
C(14)	$0.254(5)$	0.880)(3)	$1.341(5)$	13.0(3)
$\mathrm{O}(21)$	$0.264(3)$	0.662(2)	$1.227(3)$	8.0(1)
C(21)	$0.385(6)$	$0.679(3)$	$1.283(6)$	16.0(3)
C(23)	$0.440(6)$	$0.625(3)$	$1.330(6)$	18.0(3)
$\mathrm{O}(22)$	$0.0600(3)$	0.678(2)	1.104(2)	$7.0(1)$
C(22)	$0.023(5)$	0.614(3)	$1.106(5)$	10.0(2)
C(24)	-0.099(4)	$0.609(2)$	$1.052(4)$	$9.0(2)$
C(31)	-0.050(4)	$0.575(2)$	0.694(4)	4.0(1)
C(32)	-0.100(4)	0.554(2)	0.754(4)	4.0(1)
C(33)	-0.217(5)	0.526(2)	0.714(4)	$8.0(2)$
C(34)	$-0.281(5)$	0.529(2)	0.601(5)	9.0(2)
C(35)	$-0.233(4)$	0.548(2)	0.534(4)	$7.0(2)$
C(36)	-0.123(4)	$0.578(2)$	0.577(4)	$6.0(2)$
C(41)	$0.206(4)$	0.516(2)	0.770 (3)	3.0(1)
C(42)	$0.141(4)$	0.458(2)	$0.712(3)$	4.0 (1)
C(43)	$0.188(5)$	$0.397(3)$	$0.722(4)$	8.0(2)
C(44)	0,300(5)	$0.388(2)$	$0.782(4)$	$7.0(2)$
C(45)	$0.369(4)$	$0.443(2)$	0.840 (4)	7.0(2)
C(46)	$0.316(4)$	0.507(2)	0.835(4)	$7.0(2)$
C(51)	$0.127(3)$	$0.647(2)$	$0.608(3)$	$3.0(1)$
C(52)	$0.090(4)$	0.712(2)	$0.577(4)$	5.0(1)
C(53)	$0.088(4)$	$0.738(3)$	0.469(4)	$8.0(2)$
C(54)	$0.112(5)$	$0.700(3)$	$0.400(5)$	$9.0(2)$
C(55)	$0.149(4)$	0.640 (2)	$0.438(4)$	$6.0(2)$
C(56)	$0.152(4)$	0.614(2)	0.535(4)	5.0 (1)
C(61)	$0.657(3)$	0.805(2)	$1.035(3)$	4.0(1)
C(62)	$0.775(4)$	$0.788(2)$	$1.030(4)$	7.0(2)
C(63)	$0.874(5)$	0.791 (3)	1.146(4)	10.0(2)
$\mathrm{C}(64)$	$0.882(4)$	$0.856(2)$	1.198(4)	$8.0(2)$
C(65)	$0.771(4)$	0.876(2)	$1.198(3)$	5.0 (1)
C(66)	$0.672(4)$	$0.875(2)$	$1.085(3)$	5.0 (1)
$\mathrm{C}(71)$	$0.498(4)$	0.877(2)	0.819(4)	5.0 (1)
$\mathrm{C}(72)$	$0.386(5)$	$0.891(3)$	0.731(5)	$9.0(2)$
C(73)	$0.379(4)$	0.964(2)	0.695(4)	8.0 (2)
C(74)	$0.467(5)$	$0.974(2)$	0.651(4)	7.0(2)
C(75)	$0.584(5)$	0.960(3)	$0.733(5)$	11.0(2)
$\mathrm{C}(76)$	$0.587(5)$	0.886(2)	0.774(4)	$9.0(2)$
C(81)	$0.542(4)$	0.730(2)	0.813(4)	7.0(2)

Table 2 (continued)

Atom	x	y	z	$U_{\text {iso }}(\times 100)$
$\mathrm{C}(82)$	$0.555(4)$	$0.662(2)$	$0.879(4)$	$8.0(2)$
$\mathrm{C}(83)$	$0.578(4)$	$0.605(2)$	$0.811(4)$	$7.0(2)$
$\mathrm{C}(84)$	$0.481(4)$	$0.599(2)$	$0.688(4)$	$8.0(2)$
$\mathrm{C}(85)$	$0.47(0(5)$	$0.659(2)$	$0.631(4)$	$8.0(2)$
$\mathrm{C}(86)$	$0.433(5)$	$0.721(3)$	$0.692(5)$	$11.0(2)$
$\mathrm{C}(90)$	$0.764(9)$	$0.743(4)$	$1.559(6)$	$5.0(4)^{\mathrm{c}}$
$\mathrm{Cl}(91)$	$0.685(9)$	$0.804(4)$	$1.590(6)$	$14.0(2)^{\mathrm{c}}$
$\mathrm{Cl}(92)$	$0.771(9)$	$0.754(4)$	$1.430(6)$	$18.0(3)^{\mathrm{c}}$
$\mathrm{C}(93)$	$0.97(1)$	$0.896(6)$	$1.58(2)$	$4.0(1)^{\mathrm{d}}$
$\mathrm{Cl}(94)$	$0.84(1)$	$0.852(6)$	$1.54(2)$	$13.0(4)^{\mathrm{d}}$
$\mathrm{Cl}(95)$	$0.96(1)$	$0.984(6)$	$1.59(2)$	$19.0(7)^{\mathrm{d}}$
a				

${ }^{3} U_{\mathrm{c} 4}$ defined as one-third of the trace of the orthogonalized $U_{i 1}$ tensor.
${ }^{5}$ Fixed $U_{\text {iso }}$.
${ }^{\text {c }}$ Occupancy factor 0.35 .
${ }^{\mathrm{d}}$ Occupancy factor 0.15.

In the reduction of the bromo derivatives \mathbf{A} to give the anions \mathbf{B}, the mean value of the $\nu(\mathrm{CO})$ frequencies is decreased by ca. $90 \mathrm{~cm}^{-1}$ and, in the subsequent addition of the triphenylstannyl group to the anions \mathbf{B} to give complexes \mathbf{C}, the mean value of the $\nu(\mathrm{CO})$ increases by ca. $90 \mathrm{~cm}^{-1}$ [1]. In the reaction sequence $\mathbf{1} \rightarrow \mathbf{2} \rightarrow \mathbf{3}$, a decrease of ca. $90 \mathrm{~cm}^{-1}$ was observed during reduction, while the addition of the SnPh_{3} was accompanied by an increase of only $50 \mathrm{~cm}^{-1}$. From these data it seems that the step from 2 to $\mathbf{3}$ involves both the addition of SnPh_{3} and the loss of CO . Since the M - CO bonds in the electron-rich anions 2 would be strengthened by back-donation from the metals, it is reasonable to assume that the loss of CO occurs after incorporation of SnPh_{3}. It is apparent from the structures depicted in Scheme 1 that the triphenyltin derivatives \mathbf{C} and 3 are more closely related, than their bromo precursors \mathbf{A} and $\mathbf{1}$, in which the $\mathrm{S}_{2} \mathrm{CPR}_{3}$ exhibits different coordination modes. As previously reported, the reaction of \mathbf{A} with the bidentate phosphorus $\mathrm{L}-\mathrm{L}$ produced the pentacarbonyls 1 through substitution of one CO group of molybdenum and cleavage of one $\mathrm{Mn}-\mathrm{S}$ bond [4]. Complexes 3 can be considered as resulting from the substitution of two carbonyl groups (one from each metal) in the hexacarbonyls \mathbf{C} by the P atoms of the bidentate $\mathrm{L}-\mathrm{L}$. Treatment of complexes \mathbf{C} with dmpm in refluxing toluene for a short time produces derivatives $\mathbf{3 c}$,d, which can be isolated in moderate yields. The analogous reactions with tedip require longer refluxing times and this leads to extensive decomposition. IR and ${ }^{31} \mathrm{P}$ NMR monitoring of the crude reaction mixtures confirms the production of the tetracarbonyls 3a,b in low yield, accompanied by decomposition products.

The reaction conditions necessary to achieve the carbonyl substitutions leading from \mathbf{C} to $\mathbf{3}$ are significantly more extreme (refluxing toluene) than those
required to transform \mathbf{A} into $\mathbf{1}\left(-78^{\circ} \mathrm{C}\right.$ for dmpm, r.t. for tedip) [4].

There is a close structural relationship between the triphenyltin complexes \mathbf{C} and 3 , as can be seen from a comparison of $\mathbf{3 a}$ with $\mathbf{C}\left(\mathrm{R}={ }^{\mathrm{i}} \mathrm{Pr}\right)$ [5]. Due to the low accuracy in the structural determination of $\mathbf{3 a}$, this comparison must be limited to the central part of the molecules which contain the heaviest atoms and lower thermal parameters. The distances between homologous pairs of atoms in the cores of structure differ by less than 5%. The main differences in geometry concerns to the relative orientations of the substituents on the Mo atom compared with those in Mn. Fig. 2 shows a projection of the core of the molecules on to a plane perpendicular to the $\mathrm{Mn}-\mathrm{Mo}$ bond. The $\mathrm{S}_{2} \mathrm{C}(\mathrm{P})$ $\mathrm{Mn}(\mathrm{CO})_{3}$ groups of both molecules are nearly superim-

Table 3
Selected bond lengths (\AA) and angles $\left(^{\circ}\right)$ for $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{4^{-}}\right.$ (μ-tedip) $\left.\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)\right]$ (3a)
$\left.\begin{array}{lclc}\hline \mathrm{Mn}-\mathrm{Mo} & 2.937(8) & \mathrm{Mn}-\mathrm{S}(1) & 2.38(1) \\ \mathrm{Mn}-\mathrm{S}(2) & 2.34(1) & \mathrm{Mn}-\mathrm{P}(1) & 2.16(2) \\ \mathrm{Mn}-\mathrm{C}(1) & 1.99(4) & \mathrm{Mn}-\mathrm{C}(2) & 1.85(6) \\ \mathrm{Mn}-\mathrm{C}(3) & 1.74(5) & \mathrm{Mo}-\mathrm{Sn} & 2.799(5) \\ \mathrm{Mo}-\mathrm{S}(1) & 2.45(1) & \mathrm{Mo}-\mathrm{S}(2) & 2.44(1) \\ \mathrm{Mo}-\mathrm{P}(2) & 2.35(1) & \mathrm{Mo}-\mathrm{C}(4) & 1.93(5) \\ \mathrm{Mo}-\mathrm{C}(5) & 2.06(5) & \mathrm{Sn}-\mathrm{C}(31) & 2.09(4) \\ \mathrm{Sn}-\mathrm{C}(41) & 2.12(4) & \mathrm{Sn}-\mathrm{C}(51) & 2.12(4) \\ \mathrm{S}(1)-\mathrm{C}(1) & 1.76(4) & \mathrm{S}(2)-\mathrm{C}(1) & 1.81(4) \\ \mathrm{C}(2)-\mathrm{O}(2) & 1.07(5) & \mathrm{C}(3)-\mathrm{O}(3) & 1.15(5) \\ \mathrm{C}(4)-\mathrm{O}(4) & 1.17(4) & \mathrm{C}(5)-\mathrm{O}(5) & 1.08(5) \\ \mathrm{P}(3)-\mathrm{C}(1) & 1.77(4) & & \\ \mathrm{S}(1)-\mathrm{Mn}-\mathrm{Mo} & 53.6(3) & \mathrm{S}(2)-\mathrm{Mn}-\mathrm{Mo} & 53.5(3) \\ \mathrm{S}(2)-\mathrm{Mn}-\mathrm{S}(1) & 72.8(4) & \mathrm{P}(1)-\mathrm{Mn}-\mathrm{Mo} & 80.7(4) \\ \mathrm{P}(1)-\mathrm{Mn}-\mathrm{S}(1) & 112.4(6) & \mathrm{P}(1)-\mathrm{Mn}-\mathrm{S}(2) & 119.6(6) \\ \mathrm{C}(1)-\mathrm{Mn}-\mathrm{Mo} & 76 .(1) & \mathrm{C}(1)-\mathrm{Mn}-\mathrm{S}(1) & 47.1) \\ \mathrm{C}(1)-\mathrm{Mn}-\mathrm{S}(2) & 49 .(1) & \mathrm{C}(1)-\mathrm{Mn}-\mathrm{P}(1) & 155 .(1) \\ \mathrm{C}(2)-\mathrm{Mn}-\mathrm{Mo} & 129 .(2) & \mathrm{C}(2)-\mathrm{Mn}-\mathrm{S}(1) & 157 .(2) \\ \mathrm{C}(2)-\mathrm{Mn}-\mathrm{S}(2) & 92 .(2) & \mathrm{C}(2)-\mathrm{Mn}-\mathrm{P}(1) & 89 .(2) \\ \mathrm{C}(2)-\mathrm{Mn}-\mathrm{C}(1) & 111 .(2) & \mathrm{C}(3)-\mathrm{Mn}-\mathrm{Mo} & 141 .(2) \\ \mathrm{C}(3)-\mathrm{Mn}-\mathrm{S}(1) & 97 .(2) & \mathrm{C}(3)-\mathrm{Mn}-\mathrm{S}(2) & 150 .(2) \\ \mathrm{C}(3)-\mathrm{Mn}-\mathrm{P}(1) & 91 .(2) & \mathrm{C}(3)-\mathrm{Mn}-\mathrm{C}(1) & 104 .(2) \\ \mathrm{C}(3)-\mathrm{Mn}-\mathrm{C}(2) & 89 .(2) & \mathrm{Sn}-\mathrm{Mo}-\mathrm{Mn} & 139.9(2) \\ \mathrm{S}(1)-\mathrm{Mo}-\mathrm{Mn} & 51.4(3) & \mathrm{S}(1)-\mathrm{Mo}-\mathrm{Sn} & 88.8(3) \\ \mathrm{S}(2)-\mathrm{Mo}-\mathrm{Mn} & 50.6(3) & \mathrm{S}(2)-\mathrm{Mo}-\mathrm{Sn} & 117.4(3) \\ \mathrm{S}(2)-\mathrm{Mo}-\mathrm{S}(1) & 70.0(4) & \mathrm{P}(2)-\mathrm{Mo}-\mathrm{Mn} & 86.8(4) \\ \mathrm{P}(2)-\mathrm{Mo}-\mathrm{Sn} & 131.9(4) & \mathrm{P}(2)-\mathrm{Mo}-\mathrm{S}(1) & 133.9(4) \\ \mathrm{P}(2)-\mathrm{Mo}-\mathrm{S}(2) & 100.3(5) & \mathrm{C}(4)-\mathrm{Mo}-\mathrm{Mn} & 138 .(1) \\ \mathrm{C}(4)-\mathrm{Mo}-\mathrm{Sn} & 72 .(1) & \mathrm{C}(4)-\mathrm{Mo}-\mathrm{S}(1) & 146 .(1) \\ \mathrm{C}(4)-\mathrm{Mo}-\mathrm{S}(2) & 94 .(1) & \mathrm{C}(4)-\mathrm{Mo}-\mathrm{P}(2) & 77 .(1) \\ \mathrm{C}(5)-\mathrm{Mo}-\mathrm{Mn} & 108 .(1) & \mathrm{C}(5)-\mathrm{Mo}-\mathrm{Sn} & 78 .(1) \\ \mathrm{C}(5)-\mathrm{Mo}-\mathrm{S}(1) & 97 .(1) & \mathrm{C}(5)-\mathrm{Mo}-\mathrm{S}(2) & 159 .(1) \\ \mathrm{C}(5)-\mathrm{Mo}-\mathrm{P}(2) & 76 .(1) & \mathrm{C}(5)-\mathrm{Mo}-\mathrm{C}(4) & 105 .(2) \\ \mathrm{C}(31)-\mathrm{Sn}-\mathrm{Mo} & 118 .(1) & \mathrm{C}(41)-\mathrm{Sn}-\mathrm{Mo} & 116 .(1) \\ \mathrm{C}(41)-\mathrm{Sn}-\mathrm{C}(31) & 100 .(2) & \mathrm{C}(51)-\mathrm{Sn}-\mathrm{Mo} & 116 .(1) \\ \mathrm{C}(51)-\mathrm{Sn}-\mathrm{C}(31) & 103 .(2) & \mathrm{C}(51)-\mathrm{Sn}-\mathrm{C}(41) & 100 .(2) \\ \mathrm{S}(1)-\mathrm{C}(1)-\mathrm{Mn} & 78 .(2) & \mathrm{S}(2)-\mathrm{C}(1)-\mathrm{Mn} & 76 .(1) \\ \mathrm{S}(2)-\mathrm{C}(1)-\mathrm{S}(1) & 103 .(2) & \mathrm{P}(3)-\mathrm{C}(1)-\mathrm{Mn} & 138 .(2) \\ \mathrm{P}(3)-\mathrm{C}(1)-\mathrm{S}(1) & 127 .(2) & \mathrm{P}(3)-\mathrm{C}(1)-\mathrm{S}(2) & 121 .(2) \\ \mathrm{O}(2)-\mathrm{C}(2)-\mathrm{Mn} & 172 .(5) & \mathrm{O}(3)-\mathrm{C}(3)-\mathrm{Mn} & 172 .(5) \\ \mathrm{O}(4)-\mathrm{C}(4)-\mathrm{Mo} & 172 .(4) & \mathrm{O}(5)-\mathrm{C}(5)-\mathrm{Mo} & 172 .(4) \\ \hline & & & \\ \hline & & & \\ \hline\end{array}\right)$

Fig. 2. Schematic view of molecules of $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{6}(\mu-\right.$ $\left.\left.\mathrm{S}_{2} \mathrm{CP}^{\mathbf{i}} \mathrm{Pr}_{3}\right)\right](\mathrm{C})$ and $\mathbf{3 a}$ projected on to the plane perpendicular to the Mn-Mo bond. The differences in the torsion angles $\Delta \hat{u}, \Delta \hat{\nu}, \Delta \hat{w}, \Delta \hat{x}$ have been taken as absolute values, i.e. $\Delta u=\|\hat{u}(\mathbf{C})|-| \hat{u}(\mathbf{3 a})\|$.
posable, whereas the substituents of the molybdenum atom rotate in going from \mathbf{C} to $\mathbf{3 a}$ in order to accommodate the additional $\mathrm{P}-\mathrm{P}$ bridge. This is reminiscent of the relative geometry of $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)\right]$ and $\left[\mathrm{Mn}_{2}(\mathrm{CO})_{4}\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)(\mu\right.$-dppm $\left.)\right]$ [1b], although in the present case the distortion produced by substitution of two carbonyl groups by tedip is smaller than that found in the dimanganese compounds. This may be due to the lower steric requirement of tedip when compared to the dppm present in the dimanganese complex.

3. Experimental details

All reactions were carried out in dry solvents under dinitrogen. Literature procedures for the preparation of starting materials are quoted in each case. Donors and other reagents were purchased and used without purification unless otherwise stated.

3.1. $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{4}(\mu\right.$-tedip $\left.)\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)\right](3 a)$

A solution of $\left[\mathrm{MnMo}(\mathrm{CO})_{5}(\mu-\mathrm{Br})(\mu\right.$-tedip $)(\mu-$ $\mathrm{S}_{2} \mathrm{CPCy}_{3}$)] (1a) [4] ($0.197 \mathrm{~g}, 0.20 \mathrm{mmol}$) in THF (15 cm^{3}) was stirred with an excess of $1 \% \mathrm{NaHg}(10 \mathrm{~g})$ until IR monitoring showed exclusively $\nu(\mathrm{CO})$ bands of $\left[\mathrm{MnMo}(\mathrm{CO})_{5}(\mu \text {-tedip })\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)\right]^{-}$(2a) at 1912 m , 1888 (s), 1811 (s) and $1753(\mathrm{~m})\left(\mathrm{cm}^{-1}\right)$. This took about $40-50 \mathrm{~min}$ with a change from red to yellow. The mixture was allowed to settle for several minutes and the supernatant solution was then transferred to another flask containing solid $\mathrm{ClSnPh}_{3}(0.077 \mathrm{~g}, 0.20$ mmol). The colour changed instantaneously to red and IR monitoring showed completed reaction. The solvent was evaporated in vacuo, the red residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extract filtered through alumina (activity III, $2 \times 15 \mathrm{~cm}$ column). To the filtrate (ca. 35 cm^{3}) was added hexane ($15 \mathrm{~cm}^{3}$). Careful concentration in vacuo gave $\mathbf{3 a}$ as a red microcrystalline solid. Yield, $0.17 \mathrm{~g}, 68 \%$. (Anal. Found: C, 47.63; H 5.40\%. $\mathrm{C}_{49} \mathrm{H}_{68} \mathrm{MnMoO}_{9} \mathrm{P}_{3} \mathrm{~S}_{2} \mathrm{Sn}$ requires: $\mathrm{C}, 47.94 ; \mathrm{H}, 5.58 \%$).
Table 4
IR and ${ }^{31} P\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for new complexes

Compound	IR (THF) $\nu(\mathrm{CO})\left(\mathrm{cm}^{-1}\right)$	${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta(\mathrm{ppm})^{\text {a }}$					
		$\overline{\mathrm{S}_{2} \mathrm{C} P^{1}}$	$\mathrm{Mn}-\mathrm{P}^{2}$	Mo- P^{3}	$J\left(\mathrm{P}^{1}-\mathrm{P}^{2}\right)$	$J\left(\mathrm{P}^{2}-\mathrm{P}^{3}\right)$	$J\left(\mathrm{P}^{1}-\mathrm{Sn}\right)$
3a $\left[\mathrm{MnMo}(\mathrm{CO})_{4}\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)\left(\mu\right.\right.$-tedip) $\left.\left(\mathrm{SnPh}_{3}\right)\right]$	1935 (s), 1907 (s), 1870 (s), 1844 (s)	33.10	179.01 (d)	174.54 (d)	b	51	153
3b [$\mathrm{MnMo}(\mathrm{CO})_{4}\left(\mu-\mathrm{S}_{2} \mathrm{CP}^{\text {i }} \mathrm{Pr}_{3}\right)(\mu$-tedip $\left.)\left(\mathrm{SnPh}_{3}\right)\right]$	1937 (s), 1906 (s), 1872 (s), 1842 (s)	43.12	179.47 (d)	173.41 (d)	${ }^{\circ}$	50	153
$3 \mathrm{c}\left[\mathrm{MnMo}(\mathrm{CO})_{4}\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)(\mu-\mathrm{dmpm})\left(\mathrm{SnPh}_{3}\right)\right]$	1909 (s), 1879 (s), 1844 (s), 1800 (s)	32.09 (d)	22.54 (dd)	26.35 (d)	3	48	141 138
3d $\left[\mathrm{MnMo}(\mathrm{CO})_{4}\left(\mu-\mathrm{S}_{2} \mathrm{CP}^{\mathbf{i}} \mathrm{Pr}_{3}\right)(\mu\right.$-dmpm $\left.)\left(\mathrm{SnPh}_{3}\right)\right]$	1908 (s), 1879 (s), 1841 (s), 1808 (s)	42.00 (d)	21.91, (dd)	25.17 (d)	3	49	138

Coupling constants in Hz .
Not observed.

3.1.1. Structure determination of $3 a$

Crystals suitable for an X-ray determination were grown by slow diffusion of hexane into concentrated solutions of the compounds in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Relevant crystallographic details are given in Table 1. Unit cell parameters were determined from the least-squares refinement of a set of 25 centred reflections. Three reflections were measured every 1 h as orientation and intensity control. Significant decay was not observed. Heavy atoms were located from a Patterson synthesis and the remaining non-hydrogen atoms by dirdif [9]. Full matrix least-squares refinements for both structures were made with shelx76 [10]. After isotropic refinement, an absorption correction was applied with difabs [11]. A molecule of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was found to be disordered and was refined with fixed geometries in two positions (occupancy factors 0.35 and 0.15). Due to the poor quality of the crystal, and in order to keep an aceptable data-to-parameter ratio, only the heavier atoms ($\mathrm{Sn}, \mathrm{Mo}, \mathrm{Mn}, \mathrm{S}$ and P) were refined anisotropically. The remaining non-hydrogen atoms were refined isotropically. The carbon atoms of one ethyl group of the tedip ligand [$\mathrm{C}(11)$ and $\mathrm{C}(13)]$ showed some degree of thermal disorder. They were refined with fixed temperature factors of $0.10 \AA^{2}$. Hydrogen atoms were geometrically positioned and were given a common isotropic temperature factor which was refined. Full
lists of structural data have been deposited at the Cambridge Crystallographic Data Centre.

3.2. $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{4}(\mu\right.$-tedip $\left.)\left(\mu-\mathrm{S}_{2} \mathrm{CP}^{i} \mathrm{Pr}_{3}\right)\right]$

Compound 3b was prepared as described above for 3a from $\left[\mathrm{MnMo}(\mathrm{CO})_{5}(\mu-\mathrm{Br})(\mu\right.$-tedip $\left.)\left(\mu-\mathrm{S}_{2} \mathrm{CP}^{\mathrm{i}} \mathrm{Pr}_{3}\right)\right]$ (1b) [4] ($0.173 \mathrm{~g}, 0.20 \mathrm{mmol}), \mathrm{NaHg}(1 \%, 10 \mathrm{~g}$, an excess) and $\mathrm{CISnPh}_{3}(0.077 \mathrm{~g}, 0.20 \mathrm{mmol})$. The intermediate anion $\left[\mathrm{MnMo}(\mathrm{CO})_{5}(\mu \text {-tedip })\left(\mu-\mathrm{S}_{2} \mathrm{CP}^{\mathrm{i}} \mathrm{Pr}_{3}\right)\right]^{-}$ (2b) exhibited ν (CO) bands at 1913 (m), 1889 (s), 1812 (s) and $1753(\mathrm{~m})\left(\mathrm{cm}^{-1}\right)$. Similar work-up afforded 3b as yellow needles. Yield, $0.14 \mathrm{~g}, 64 \%$. (Anal. Found: C, 43.12; $\mathrm{H}, 5.23 \% . \mathrm{C}_{40} \mathrm{H}_{56} \mathrm{MnMoO}_{9} \mathrm{P}_{3} \mathrm{~S}_{2} \mathrm{Sn}$ requires: C, 43.38; H, 5.10%.)

3.3. $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{4}(\mu-d m p m)\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)\right](3 \mathrm{c})$

Method A

Compound 3 c was prepared as described above for 3a from $\left[\mathrm{MnMo}(\mathrm{CO})_{5}(\mu-\mathrm{Br})(\mu-\mathrm{dmpm})\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)\right]$ (1c) [4] ($0.172 \mathrm{~g}, 0.20 \mathrm{mmol}), \mathrm{NaHg}(1 \%, 10 \mathrm{~g}$, an excess) and $\mathrm{ClSnPh}_{3}(0.077 \mathrm{~g}, 0.20 \mathrm{mmol})$. The intermediate anion $\left[\mathrm{MnMo}(\mathrm{CO})_{5}(\mu-\mathrm{dmpm})\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)\right]^{-}$ (2c) exhibited $\nu(\mathrm{CO})$ bands at $1895(\mathrm{~m}), 1863$ (s), 1788 (s) and $1728(\mathrm{~m})\left(\mathrm{cm}^{-1}\right)$. Compound 3 c was obtained as deep red crystals. Yield, $0.13 \mathrm{~g}, 60 \%$. (Anal. Found: C,

Table 5
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ NMR data for new complexes ${ }^{\text {a }}$

Compound	${ }^{1} \mathrm{H}$ NMR δ (ppm)	${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ NMR δ (ppm)
3a	$7.75,7.25\left[\mathrm{~m}, 15 \mathrm{H}, \mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right] ;$ 4.19, $3.92\left[\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{CH}_{2}\right.$ of tedip]; 2.31 [m, 3H, CH of Cy]; 1.95-1.19 [m, br, $30 \mathrm{H}, \mathrm{CH}_{2}$ of Cy]; 1.39 [t(7), $6 \mathrm{H}, 2 \mathrm{CH}_{3}$ of tedip]; $1.20\left[t(7), 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right.$ of tedip]	232.9 [d(35), MoCO]; 228.7 [d(33), 2 MnCO]; 146.7 [s, $J(\mathrm{C}-\mathrm{Sn})=362$ Hz, C^{1} of SnPh$] ; 137.5\left[\mathrm{~s}, J(\mathrm{C}-\mathrm{Sn})=36 \mathrm{~Hz}, C^{3}\right.$ and C^{5} of SnPh ; $128.0\left[\mathrm{~s}, J(\mathrm{C}-\mathrm{Sn})=42 \mathrm{~Hz}, \mathrm{C}^{2}\right.$ and C^{6} of SnPh]; 127.8 [$\mathrm{s}, \mathrm{C}^{4}$ of SnPh]; 86.6 [d(49), $\mathrm{S}_{2} \mathrm{CP}$]; 62.11 [dd(12 and 5), CH_{2} of tedip]; 34.4 [d(40), C^{1} of Cy]; 27.6 [s, C^{2} and C^{6} of $C y$]; 27.1 [d(12), C^{3} and C^{5} of $C y$]; 25.5 [s, C^{4} of $C y$]; 16.4 [m, CH_{3} of tedip]
3b	$7.74,7.27\left[\mathrm{~m}, 15 \mathrm{H}, \mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]$; 4.24, $3.85\left[\mathrm{~m}, 8 \mathrm{H}, 2 \mathrm{CH}_{2}\right.$ of tedip]; $2.58\left[\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}\right.$ of $\left.{ }^{\mathrm{i}} \mathrm{Pr}\right]$; 1.44 [t(7), $6 \mathrm{H}, 2 \mathrm{CH}_{3}$ of tedip]; $1.32-1.25\left[\mathrm{~m}, 24 \mathrm{H}, 8 \mathrm{CH}_{3}\right.$ of ${ }^{i} \mathrm{Pr}$ and tedip]	$231.9[\mathrm{~d}(34), J(\mathrm{C}-\mathrm{Sn})=362 \mathrm{~Hz}, 2 \mathrm{MoCO}] ; 227.2[\mathrm{~d}(32), 2 \mathrm{MnCO}] ; 146.5[\mathrm{~s}$, $J(\mathrm{C}-\mathrm{Sn})=334 \mathrm{~Hz}, C^{1}$ of SnPh$] ; 137.2\left[\mathrm{~s}, J(\mathrm{C}-\mathrm{Sn})=36 \mathrm{~Hz}, C^{3}\right.$ and C^{5} of SnPh$] ;$ $127.6\left[\mathrm{~s}, J(\mathrm{C}-\mathrm{Sn})=42 \mathrm{~Hz}, C^{2}\right.$ and C^{6} of SnPh]; 127.4 [s, C^{4} of SnPh]; 86.6 [d(51), $\mathrm{S}_{2} \mathrm{CP}$]; 61.7 [dd(8 and 5), CH_{2} of tedip]; 23.6 [d(44), CH of $\left.{ }^{\mathrm{i}} \mathrm{Pr}\right]$; 17.7 [d(2), CH_{3} of $\left.{ }^{\mathrm{i}} \mathrm{Pr}\right] ; 15.1$ [m, CH_{3} of tedip]
3c	7.69, $7.26\left[\mathrm{~m}, 15 \mathrm{H}, \mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right] ;$ 3.71 [m, $2 \mathrm{H}, \mathrm{CH}_{2}$ of dmpm]; 2.27 [m, 3H, CH of Cy]; $2.06-1.04\left[\mathrm{~m}, \mathrm{a}, 30 \mathrm{H}, \mathrm{CH}_{2}\right.$ of Cy]; $1.90\left[\mathrm{~d}(8), 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right.$ of dmpm]; 1.61 [d(9), $6 \mathrm{H}, 2 \mathrm{CH}_{3}$ of dmpm]	236.3 [d(25), 2 MoCO]; 232.3 [d(22), 2 MnCO]; 147.4 [s, C^{1} of SnPh]; $137.1\left[\mathrm{~s}, J(\mathrm{C}-\mathrm{Sn})=36 \mathrm{~Hz}, C^{3}\right.$ and C^{5} of SnPh$] ; 127.4[\mathrm{~s}, J(\mathrm{C}-\mathrm{Sn})=41 \mathrm{~Hz}$, C^{2} and C^{6} of SnPh]; 127.0 [s, C^{4} of SnPh]; 85.7 [d(51), $\mathrm{S}_{2} C$ P]; 57.9; $34.0\left[\mathrm{~d}(42), C^{1}\right.$ of Cy]; 27.6 [s, C^{2} and C^{6} of $\left.C y\right] ; 26.8\left[d(12), C^{3}\right.$ and C^{5} of $\left.C y\right] ;$ 25.3 [s, C^{4} of Cy]; 24.1 [dd(30 and 5), CH_{3} of dmpm]; 18.8 [dd(30 and 5$), \mathrm{CH}_{3}$ of dmpm]
3d	$7.67,7.24\left[\mathrm{~m}, 15 \mathrm{H}, \mathrm{Sn}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right]$; $3.65\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ of dmpm]; $2.50\left[\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}\right.$ of $\left.{ }^{\mathrm{i}} \mathrm{Pr}\right]$; 1.91 [d(8), $6 \mathrm{H}, 2 \mathrm{CH}$ of dmpm]; $1.60\left[\mathrm{~d}(9), 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right.$ of dmpm]	$236.0[\mathrm{~d}(24), 2 \mathrm{MoCO}] ; 232.0[\mathrm{~d}(22), 2 \mathrm{MnCO}] ; 147.4[\mathrm{~s}, \mathrm{~J}(\mathrm{C}-\mathrm{Sn})=362 \mathrm{~Hz}$, C^{1} of SnPh$] ; 137.2\left[\mathrm{~s}, J(\mathrm{C}-\mathrm{Sn})=36 \mathrm{~Hz}, C^{3}\right.$ and C^{5} of SnPh ; $127.5[\mathrm{~s}, J(\mathrm{C}-\mathrm{Sn})=41$ $\mathrm{Hz}, \mathrm{C}^{2}$ and C^{6} of SnPh]; 127.1 [s, C^{4} of SnPh]; 84.7 [d(51), $\mathrm{S}_{2} \mathrm{CP}$]; 56.8 [dd(26 and 21), CH_{2} of dmpm]; 24.6-23.5 [m, CH_{3} of dmpm and CH of ${ }^{i} \mathrm{Pr}$]; 18.5 [dd(10 and 5), CH_{3} of dmpm]; 17.7 [d(2), CH_{3} of ${ }^{\mathrm{i}} \mathrm{Pr}$]

[^1]$50.32 ; \mathrm{H}, 5.60 \% . \mathrm{C}_{46} \mathrm{H}_{62} \mathrm{MnMoO}_{4} \mathrm{P}_{3} \mathrm{~S}_{2} \mathrm{Sn}$ requires: C , 49.97; H, 5.65\%.)

Method B

A mixture of $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{6}\left(\mu-\mathrm{S}_{2} \mathrm{CPCy}_{3}\right)\right]$ [5] $(0.21 \mathrm{~g}, 0.20 \mathrm{mmol})$ and dmpm ($0.032 \mathrm{~cm}^{3}, 0.2 \mathrm{mmol}$) was heated under reflux in toluene ($15 \mathrm{~cm}^{3}$) for 20 min . The solvent was removed in vacuo, the residue extracted with a minimum amount of a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane ($1: 1$, vol:vol) and filtered through alumina. The filtrate was concentrated in vacuo and stored at $-20^{\circ} \mathrm{C}$ for several days, to give red crystals of 3c. Yield, $0.093 \mathrm{~g}, 42 \%$. (Anal. Found: C, 50.26 ; H, $5.48 \% . \mathrm{C}_{46} \mathrm{H}_{62} \mathrm{MnMoO}_{4} \mathrm{P}_{3} \mathrm{~S}_{2} \mathrm{Sn}$ requires: $\mathrm{C}, 49.97 ; \mathrm{H}$, 5.65%.)
3.4. $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{4}(\mu-d m p m)\left(\mu-\mathrm{S}_{2} \mathrm{CP}^{i} \mathrm{Pr}_{3}\right)\right]$ (3d)

Method A

Compound 3d was prepared as described above for 3a from $\left[\mathrm{MnMo}(\mathrm{CO})_{5}(\mu-\mathrm{Br})(\mu-\mathrm{dmpm})\left(\mu-\mathrm{S}_{2} \mathrm{CP}^{i} \mathrm{Pr}_{3}\right)\right]$ (1d) [4] $(0.149 \mathrm{~g}, 0.20 \mathrm{mmol}), \mathrm{NaHg}(1 \%, 10 \mathrm{~g}$, an excess) and $\mathrm{ClSnPh}_{3}(0.077 \mathrm{~g}, 0.20 \mathrm{mmol})$. The intermediate anion $\left[\mathrm{MnMo}(\mathrm{CO})_{5}(\mu-\mathrm{dmpm})\left(\mu-\mathrm{S}_{2} \mathrm{CP}^{\mathrm{i}} \mathrm{Pr}_{3}\right)\right]^{-}$ (2d) exhibited $\nu(\mathrm{CO})$ bands at 1894 (m), 1865 (s), 1790 (m) and $1730(\mathrm{~m})\left(\mathrm{cm}^{-1}\right)$. Compound 3d was obtained as deep red crystals. Yield, $0.11 \mathrm{~g}, 56 \%$. (Anal. Found: C, $44.93 ; \mathrm{H}, 5.02 \% . \mathrm{C}_{37} \mathrm{H}_{50} \mathrm{MnMoO}_{4} \mathrm{P}_{3} \mathrm{~S}_{2} \mathrm{Sn}$ requires: C, 45.10; H, 5.11%.)

Method B

Compound 3d was prepared as 3c (Method B) above by heating a mixture of $\left[\mathrm{MnMo}\left(\mathrm{SnPh}_{3}\right)(\mathrm{CO})_{6}(\mu\right.$ $\left.\left.\mathrm{S}_{2} \mathrm{C}^{i} \mathrm{Pr}_{3}\right)\right][5](0.18 \mathrm{~g}, 0.20 \mathrm{mmol})$ and dmpm $\left(0.032 \mathrm{~cm}^{3}\right.$, 0.2 mmol) in toluene ($15 \mathrm{~cm}^{3}$) for 20 min under reflux. The work-up was as described for 3c. Yield, 0.095 g , 48%. (Anal. Found: C, 44.87; $\mathrm{H}, 4.78 \% . \mathrm{C}_{37} \mathrm{H}_{50}{ }^{-}$ $\mathrm{MnMoO}_{4} \mathrm{P}_{3} \mathrm{~S}_{2} \mathrm{Sn}$ requires: $\mathrm{C}, 45.01 ; \mathrm{H}, 5.11 \%$.)

The relevant IR and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data for complexes $\mathbf{3 a - d}$ are listed in Table 4 while the corresponding ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ NMR data are listed in Table 5.

Acknowledgements

We thank the Spanish Dirección General de Investigación Científica y Técnica (Project PB91-0678), FICYT, and Metalúrgica de Nalón S.A. for financial support. We also thank FICYT for grants to E.M.L. and J.A.P.-M.

References

[1] (a) D. Miguel, V. Riera, J.A. Miguel, X. Soláns and M. Font-Attaba, J. Chem. Soc., Chem. Commun., (1987) 472; (b) D. Miguel, V. Riera, J.A. Miguel, M. Gómez and X. Soláns, Organometallics, 10 (1991) 1683.
[2] B. Alvarez, S. García-Granda, Y. Jeannin, D. Miguel, J.A. Miguel and V. Riera, Organometallics, 10 (1991) 3005.
[3] B. Alvarez, S. García-Granda, J. Li, D. Miguel and V. Riera, Organometallics, 13 (1994) 16.
[4] D. Miguel, J.A. Pérez-Martínez, V. Riera and S. García-Granda, J. Organomet. Chem., 420 (1991) C12; D. Miguel, J.A. PérezMartínez, V. Riera and S. García-Granda, Organometallics, 12 (1993) 1394.
[5] D. Miguel, J.A. Pérez-Martínez, V. Riera and S. García-Granda, Organometallics, 12 (1993) 2888.
[6] R.H. Fong, C.-H. Lin, H. Idmoumaz and W.H. Hersh, Organometallics, 12 (1993) 503.
[7] B.V. Prasad, C.S. Reddy and E.D. Jemmis. Inorg. Chim. Acta, 162 (1989) 281.
[8] E.D. Jemmis, G. Subramanian and B.V. Prasad, Organometallics, 12 (1993) 4267.
[9] P.T. Beurskens, G. Admiraal, W.P. Bosman, G. Beurskens, H.M. Doesburg, S. García-Granda, R.O. Gould, J.M.M. Smits and C. Smikalla, The DIrdif Program System, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands, 1982.
[10] G.M. Sheldrick, sheLx 76 ,Program for Crystal Structure Determinations, University of Cambridge, 1976; Local version: F.J. Van der Maelen, Ph.D. Thesis, University of Oviedo, Oviedo, Spain, 1991.
[11] N. Walker and D. Stuart, Acta Crystallogr., A39 (1983) 158.
[12] A.L. Spek, The Euclid package, in E. Sayre (ed.), Computational Crystallography, Clarendon, Oxford, England, 1982, p. 528.

[^0]: ${ }^{*}$ Corresponding author.

[^1]: ${ }^{\text {a }}$ From $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solutions.

